Publications: 42 | Followers: 0

The AGSC LAW (1994) - Auburn University

Publish on Category: Birds 0

ABETAccreditation Board for Engineering and Technology
What Is ABET Accreditation?ABETaccreditation is not a ranking system; rather, it is a form of quality assurance, declaring to the relevant professional community and to the world at large, that a program meets the quality standards set by the technical profession.ABETaccreditation applies toprogramsonly, not degrees, departments, colleges, institutions, or individuals.ABETis a federation of member professional and technical societies. These societies and their individual members collaborate through ABET to develop quality standards, known asABET Criteria, on which ABET review teams base their evaluations of applied science, computing, engineering, and engineering technology programs. Duke, March 2014
ABETAccreditation Board for Engineering and Technology
GENERALCRITERIA FOR BACCALAUREATE LEVELPROGRAMSGeneral Criterion1.StudentsGeneralCriterion 2. Program EducationalObjectivesGeneralCriterion 3. StudentOutcomesGeneralCriterion 4. ContinuousImprovementGeneralCriterion 5.CurriculumGeneralCriterion 6.FacultyGeneralCriterion 7.FacilitiesGeneralCriterion 8. InstitutionalSupportPROGRAM CRITERIAone for each specific programchemical, civil, mechanical, electrical, etc.
ABET Criteria for Accrediting Engineering Programs, 2014 -2015GeneralCriterion 3. Student Outcomes
The program must have documented student outcomes that prepare graduates to attain the program educational objectives.Student outcomes are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.(a) an ability to apply knowledge of mathematics, science, and engineering(b) an ability to design and conduct experiments, as well as to analyze and interpret data(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such aseconomic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability(d) an ability to function onmultidisciplinary teams
(e) an ability to identify, formulate, and solve engineering problems(f) an understanding ofprofessional and ethical responsibility(g) an ability tocommunicate effectively(h) thebroad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context(i) a recognition of the need for, and an ability to engage inlife-long learning(j) a knowledge ofcontemporary issues(k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
ABET Criteria for Accrediting Engineering Programs, 2014 -2015GeneralCriterion4. Continuous Improvement
The program must regularly use appropriate, documented processes for assessing and evaluating the extent to which the student outcomes are being attained.Theresults of these evaluations must be systematically utilized as input for the continuous improvement of the program.Otheravailable information may also be used to assist in the continuous improvement of the program.
ABET Criteria for Accrediting Engineering Programs, 2014 -2015GeneralCriterion 5. Curriculum
Thecurriculum requirements specify subject areas appropriate to engineering but do not prescribe specific courses.The faculty must ensurethat the program curriculum devotes adequate attention and time to each component, consistent with the outcomes and objectives of the program and institution. The professional component must include:(a) one year of a combination of college levelmathematics and basic sciences(some with experimental experience) appropriate to the discipline. Basic sciences are defined as biological, chemical, and physical sciences.(b) one and one-half years ofengineering topics, consisting of engineering sciences and engineering design appropriate to the student's field of study. The engineering sciences have their roots in mathematics and basic sciences but carry knowledge further toward creative application. These studies provide a bridge between mathematics and basic sciences on the one hand and engineering practice on the other. Engineering design is the process of devising a system, component, or process to meet desired needs. It is a decision-making process (often iterative), in which the basic sciences, mathematics, and the engineering sciences are applied to convert resources optimally to meet these stated needs.(c) ageneral educationcomponent that complements the technical content of the curriculum and is consistent with the program and institution objectives.Students must be prepared for engineering practice through a curriculum culminating in amajor design experiencebased on the knowledge and skills acquired in earlier course work and incorporating appropriate engineering standards and multiple realistic constraints.One year is the lesser of 32 semester hours (or equivalent) or one-fourth of the total credits required for graduation.
ABET Criteria for Accrediting Engineering Programs, 2014 -2015Program Specific Criteria (MECH and CIVL)
Program Criteria for Mechanical and Similarly Named Engineering ProgramsLeadSociety: American Society of MechanicalEngineersCurriculum: Thecurriculum must require students to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations); to model, analyze, design, and realize physical systems, components or processes; and prepare students to work professionally in either thermal or mechanical systems while requiring courses in each area.Program Criteria for Civil and Similarly Named EngineeringProgramsLead Society: American Society of CivilEngineersCurriculum: Theprogram must prepare graduates to apply knowledge of mathematics through differential equations, calculus-based physics, chemistry, and at least one additional area of basic science, consistent with the program educational objectives; apply knowledge of four technical areas appropriate to civil engineering; conduct civil engineering experiments and analyze and interpret the resulting data; design a system, component, or process in more than one civil engineering context; explain basic concepts in management, business, public policy, and leadership; and explain the importance of professional licensure.





Make amazing presentation for free
The AGSC LAW (1994) - Auburn University